#### Spatially Aware SIR Disease Model

##### Gene Bellinger

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

- 2 months 2 weeks ago

#### RAGE SIR Model

##### Kendra Simpson

This model is for BME 1300, where we have to model an infectious disease, in this case, a zombie virus: Rage.

- 6 years 5 months ago

#### SIR Model

##### Luis Gustavo Nardin

- 2 years 8 months ago

#### SIRD Epidemic Model with Suppression Policies

##### Bob Hawkins

This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies.

Press the simulate button to run the model with no policy. Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below. First explore changing the start date with a policy duration of 60 days.

Press the simulate button to run the model with no policy. Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below. First explore changing the start date with a policy duration of 60 days.

- 1 year 4 months ago

#### Future Learn Basic SIR Model

##### Bob Hawkins

This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).

Press the simulate button to run the model and see what happens at different values of the Reproduction Number (R0).

The second model that includes a simple test and isolate policy can be found here.

Press the simulate button to run the model and see what happens at different values of the Reproduction Number (R0).

The second model that includes a simple test and isolate policy can be found here.

- 1 year 3 months ago

#### SIR Model

##### Sarah Huang

- 5 years 11 months ago

#### Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Andrew E Long

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 5 months ago

#### A Simple SIR (Susceptible, Infected, Recovered) Example

##### Andrew E Long

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 6 months ago

#### SIRKimpossibles

##### Kimpossibles

A Susceptible-Infected-Recovered (SIR) disease model for Rage

- 6 years 5 months ago

#### A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Andrew E Long

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 7 months ago

#### A Simple SIR (Susceptible, Infected, Recovered) without infection

##### Andrew E Long

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 3 years 7 months ago

#### A Simple, non-dimensionalized SIR (Susceptible, Infected, Recovered) model, with periodic infectivity

##### Andrew E Long

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 3 years 7 months ago

#### Modelo de dispersão espacial de uma doença baseado em SIR-ABM

##### Dager Moreira da Silva

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

- 1 year 2 months ago

#### Future Learn Basic SIR Model with Sample Testing

##### Bob Hawkins

This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found here.

- 1 year 4 months ago

#### SIR model with stochastic events

##### Andrew E Long

Thanks to

https://insightmaker.com/insight/25229/SIR-model-with-stochastic-events

for this example of adding stochasticity to the SIR model. "A simple extension of the tutorial SIR example, adding in Poisson events for infection and recovery. There is one macro, RandPoissonStep(rate)... to simulate Poisson processes."

I've tried to add in the infection step, as well as turn numbers into integers (without much luck). But it certainly has some interesting dynamics! I've also added in a phase plane graphic.

https://insightmaker.com/insight/25229/SIR-model-with-stochastic-events

for this example of adding stochasticity to the SIR model. "A simple extension of the tutorial SIR example, adding in Poisson events for infection and recovery. There is one macro, RandPoissonStep(rate)... to simulate Poisson processes."

I've tried to add in the infection step, as well as turn numbers into integers (without much luck). But it certainly has some interesting dynamics! I've also added in a phase plane graphic.

- 3 years 6 months ago

#### Untitled Insight

##### walaa faraj

- 2 years 1 month ago

#### Aeromonas Management Model

##### Bradley Richardson

- 2 years 6 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Sally Dufek

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 3 years 7 months ago

#### Aeromonas ABM - Farm

##### Bradley Richardson

- 2 years 7 months ago

#### Key for Lab SIR 2 -- Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) Model for Coronavirus

##### Andrew E Long

Spring, 2020:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-6, we recover their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

* http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb

* http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA-with-Flattening.nb

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-6, we recover their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

* http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb

* http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA-with-Flattening.nb

- 1 year 5 months ago

#### Clone of SIR Model

##### Evandro Dias Gaio

- 1 year 2 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Adam May

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 3 years 7 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Donna Odhiambo

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 3 years 7 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Maria E Ruwe

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 3 years 7 months ago